YEARS 8, 9 AND 10 AT TRINITY GRAMMAR SCHOOL

The move from Year 7 to Year 8 begins a boy's programme for the award of stage 5 Grades at the end of Year 10 and lays the foundation for senior studies in Years 11 and 12.

Years 8, 9 and 10 at Trinity Grammar School are characterised by rigorous academic study. Boys will be required to be focussed on their studies and encouraged to reach high standards of achievement.

For the first time, students are allowed to make some selections in the subjects they study, although there remains a strong core of subjects which everybody must study. The choice of subjects is an exciting opportunity, and the purpose of this book is to assist boys and their parents to make wise choices.

Honours classes in English, Mathematics, Science and History provide a very strong academic focus for highly able boys in these subject areas. Selection into Honours Classes is based on student achievement. Support classes are also available to meet the specific educational needs of students.

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>> Years 8, 9 and 10 at Trinity Grammar School</td>
<td>2</td>
</tr>
<tr>
<td>> Compulsory Subjects</td>
<td>3</td>
</tr>
<tr>
<td>> Elective Subjects</td>
<td>3</td>
</tr>
<tr>
<td>> Making Choices</td>
<td>3</td>
</tr>
<tr>
<td>> Other Options</td>
<td>3</td>
</tr>
<tr>
<td>> Resource Limitations</td>
<td>4</td>
</tr>
<tr>
<td>> Changes to Subject Selections</td>
<td>4</td>
</tr>
<tr>
<td>> Acceleration</td>
<td>4</td>
</tr>
<tr>
<td>SUBJEC TPREREQUISITES</td>
<td>4</td>
</tr>
<tr>
<td>MANDATORY COURSES: NON-ELECTIVE SUBJECTS</td>
<td>8</td>
</tr>
<tr>
<td>Christian Studies</td>
<td>6</td>
</tr>
<tr>
<td>English</td>
<td>7</td>
</tr>
<tr>
<td>Geography</td>
<td>8</td>
</tr>
<tr>
<td>History</td>
<td>10</td>
</tr>
<tr>
<td>Languages, Classical and Modern</td>
<td>12</td>
</tr>
<tr>
<td>Mathematics</td>
<td>12</td>
</tr>
<tr>
<td>Personal Development, Health & Physical Education</td>
<td>16</td>
</tr>
<tr>
<td>Science</td>
<td>16</td>
</tr>
<tr>
<td>Technology (Mandatory)</td>
<td>17</td>
</tr>
<tr>
<td>ELECTIVE COURSES</td>
<td>18</td>
</tr>
<tr>
<td>Commerce</td>
<td>18</td>
</tr>
<tr>
<td>Drama</td>
<td>19</td>
</tr>
<tr>
<td>Information and Software Technology</td>
<td>20</td>
</tr>
<tr>
<td>Languages, Classical and Modern</td>
<td>21</td>
</tr>
<tr>
<td>Latin</td>
<td>21</td>
</tr>
<tr>
<td>Classical Greek</td>
<td>21</td>
</tr>
<tr>
<td>Chinese</td>
<td>22</td>
</tr>
<tr>
<td>French and German</td>
<td>22</td>
</tr>
<tr>
<td>Music</td>
<td>23</td>
</tr>
<tr>
<td>Photographic and Digital Media</td>
<td>24</td>
</tr>
<tr>
<td>Technology and Design</td>
<td>26</td>
</tr>
<tr>
<td>TV Production</td>
<td>31</td>
</tr>
<tr>
<td>Visual Arts</td>
<td>32</td>
</tr>
<tr>
<td>Visual Design</td>
<td>33</td>
</tr>
<tr>
<td>CONTACT US</td>
<td>35</td>
</tr>
</tbody>
</table>
SUBJECT SELECTION PROCESS

COMPULSORY SUBJECTS

The following subjects form the Core curriculum of compulsory studies for Years 8, 9 and 10 at Trinity Grammar School:

> Christian Studies
> English
> Geography
> History
> Language (Classical or Modern)*
> Mathematics
> Personal Development Health and Physical Education
> Science
> Technology*

*Compulsory for Year 8 only.

ELECTIVE SUBJECTS

Boys must choose two Elective subjects for Year 8, which must include at least one Language (Classical or Modern). The strong tradition of Language teaching at Trinity encourages many boys to continue with the study of one or more Languages into Years 9 and 10. However, Language study is only mandatory for Year 8 and at the end of Year 8, boys will be given the opportunity to discontinue their Language and choose another Elective for Years 9 and 10. The two Electives taken for Years 9 and 10 will be presented as subjects for the award of Stage 5 Grades, which will ultimately be reported on the Record of School Achievement (ROSA). Boys do not usually change Electives at the end of Year 9.

The subjects from which boys may choose their Electives are shown in the following table. Please note that a subject may only be chosen once.

<table>
<thead>
<tr>
<th>Elective 1</th>
<th>Elective 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Languages</td>
<td>Languages</td>
</tr>
<tr>
<td>French</td>
<td>French</td>
</tr>
<tr>
<td>German</td>
<td>German</td>
</tr>
<tr>
<td>Latin</td>
<td>Latin</td>
</tr>
<tr>
<td>Mandarin</td>
<td>Mandarin</td>
</tr>
<tr>
<td>Mandarin Advanced</td>
<td>Mandarin Advanced</td>
</tr>
<tr>
<td>Non Languages</td>
<td>Non Languages</td>
</tr>
<tr>
<td>Commerce</td>
<td>Commerce</td>
</tr>
<tr>
<td>Drama</td>
<td>Design & Technology</td>
</tr>
<tr>
<td>Graphics Technology</td>
<td>Industrial Technology (Wood)</td>
</tr>
<tr>
<td>Industrial Technology (Metal)</td>
<td>Information & Software Technology</td>
</tr>
<tr>
<td>Industrial Technology (Wood)</td>
<td>Music</td>
</tr>
<tr>
<td>Information & Software Technology</td>
<td>Visual Arts</td>
</tr>
<tr>
<td>Music</td>
<td></td>
</tr>
<tr>
<td>Photographic & Digital Media</td>
<td></td>
</tr>
<tr>
<td>Visual Arts</td>
<td></td>
</tr>
</tbody>
</table>

In selecting Elective subjects, boys are encouraged to choose subjects which interest them and in which they will work hard. This is the best way of ensuring good Grades at the end of Year 10.

However, there may be some other factors which boys should consider.

1. Check the table of Prerequisite studies published in this book. Prerequisites are courses which need to have been completed, or Grades which need to have been earned, before a student is advised to enrol in a particular subject in Years 11 and 12. Boys who have a clear idea about subjects they wish to study for the HSC or IB should be careful not to cut off options by failing to meet prerequisites in Years 8, 9 and 10.

2. Some boys will have a clear idea of the sort of career direction they may wish to take, and others may have a vague idea. These boys should ensure that they seek advice from the Careers Adviser about appropriate subjects to undertake for Years 8-10 to ensure that they do not cut off options.

3. For the majority of students who, at this early age, have little idea at all about their possible careers, there is the reassurance that few choices made for Years 8-10 are likely to impact very significantly on their future options, unless they leave school at the minimum age of 17.

Boys who may wish to undertake the International Baccalaureate (IB) Diploma course in Years 11 and 12 are strongly advised to select a Language with the intention of continuing its study through to Year 10. This is because the IB requires a foreign language to be studied, and it is far easier to meet this requirement if a Language has been studied continually until Year 10. However, at least one ab initio (beginner) Language is always offered for IB Students.

Boys are encouraged to seek advice from Deans or Heads of Departments, the Careers Adviser, their Middle School Housemaster, the Director of Curriculum, the Master of the Middle School or the Academic Dean to help them to make the most appropriate choices.

MAKING THE CHOICES

Once the above matters have been considered, boys are asked to make their subject selections in consultation with their parents. Selections should be made on the form emailed to parents by the designated date due. Boys whose forms are received after the designated date may be accorded a lower priority for placement in their chosen courses.

OTHER OPTIONS

For a small number of boys, particularly those who have a special wish or need to study a foreign Language other than those offered here, the Open High School or the Saturday School of Community Languages might be able to assist. Enquiries regarding these institutions should be directed, in the first instance, to the Co-ordinator of Outside Languages, Ms Kao. It is important to note that the Open High School and Saturday School of Community Languages are operated by the NSW Department of Education and Communities, and have their own enrolment policies and fee structures. Significant additional fees charged by some outside providers can be an important factor to consider.
RESOURCE LIMITATIONS
It must be clearly stated that, while a broad configuration of choice is initially offered, the School will only proceed to form classes where it is deemed that sufficient students have chosen the particular subject, and that the class can be properly resourced. Similarly, some classes have strict limits on the number of available places. In these cases Deans and Heads of Department will advise the Academic Dean regarding which applicants for the course are most likely to be able to meet its requirements.

These restrictions may necessitate some boys being asked to re-select one or more subjects once final numbers are known.

CHANGES TO SUBJECT SELECTIONS
Boys are asked to choose wisely and carefully. Some changes can be accommodated after the commencement of the new academic year, but not all. Generally speaking, no changes will be permitted from a fortnight after the issue of Academic Reports at the end of Lent Term in Year 8.

ACCELERATION
The Board of Studies, Teaching and Educational Standards (BOSTES) also makes it possible for students to accelerate either in one subject or for an entire year. This possibility is restricted to the most able students, and strict guidelines are laid down by BOSTES.

Applications for acceleration may be made either through the Academic Dean or Trinity Education Support Services (TESS). All acceleration decisions require the approval of the Academic Dean, and some, the approval of the Head Master.

SUBJECT PREREQUISITES

Ancient History
→ Completion of Mandatory Australian History, Stage 5.

Biology
→ C or above in Science in Year 10

Business Studies
→ No prerequisites - good extended response writing skills advisable, and the ability to apply mathematical procedures

Construction
→ VET Course. No formal prerequisite, ideally suited to students who have completed an Industrial Technology course through Years 8-10 and wish to enter the building or construction industries.

Chemistry
→ B or above in Science and C+ or above in Mathematics in Year 10

Chinese
→ **Chinese Continuers**: students whose knowledge of Chinese derives solely from the study of the language as a second (or subsequent) language in an education system in which the language was not the medium for instruction OR whose knowledge of the language is derived from no more than one year’s formal education (up to Year 10 or equivalent) in the language, in a country where the language is the medium of instruction.

→ **Extension**: Students who have achieved a high standard in the Continuers course. Entry to the course will be considered on an individual basis.

→ **Chinese and Heritage Background Speakers**: All students wishing to study Chinese for the HSC are to be enrolled in the Background speaker’s course unless they can clearly demonstrate that they fall into either category for the Continuers course.

→ **NOTE**: All speakers of Chinese dialects are considered to be Heritage or Background Speakers of Chinese.

Classical Greek
→ Should have achieved a B in Year 10 Classical Greek

Commerce
→ C+ or above in English

Design & Technology
→ No formal prerequisites. Computer skills associated with folio production are largely covered in Mandatory Design & Technology in Yrs. 7 & 8. Ideal for students who like to design, make and appraise.

Drama
→ No formal pre-requisites

SUBJECT SELECTION CONTINUED
<table>
<thead>
<tr>
<th>Subject</th>
<th>Achievement Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economics</td>
<td>B+ or above in English</td>
</tr>
<tr>
<td>Electrotechnology</td>
<td>VET Course. No formal prerequisites, ideally suited to students who have completed an Industrial Technology elective course through Years 8-10 and who wish to enter construction industry, specifically within the electrical trade.</td>
</tr>
<tr>
<td>English</td>
<td></td>
</tr>
<tr>
<td>11 Standard</td>
<td>no pre-requisite</td>
</tr>
<tr>
<td>Advanced</td>
<td>no pre-requisite</td>
</tr>
<tr>
<td>11 Extension</td>
<td>11 Advanced co-requisite</td>
</tr>
<tr>
<td>11 ESL & 12 ESL</td>
<td>entry requirements set by BOSTES. See the Dean of English for details.</td>
</tr>
<tr>
<td>12 Standard</td>
<td>11 Standard pre-requisite</td>
</tr>
<tr>
<td>12 Advanced</td>
<td>11 Advanced pre-requisite</td>
</tr>
<tr>
<td>12 Extension 1</td>
<td>11 Extension pre-requisite</td>
</tr>
<tr>
<td>12 Extension 2</td>
<td>12 Extension 1 co-requisite</td>
</tr>
<tr>
<td>Engineering Studies</td>
<td>Suited to boys who enjoy Maths & Science. It is recommended that students undertake 2 unit Maths and/or Physics and/or Chemistry in conjunction with Engineering studies. Ideal for students who want to know why and how.</td>
</tr>
<tr>
<td>French</td>
<td>Should have achieved grade of C or above in Year 10 French</td>
</tr>
<tr>
<td>Geography</td>
<td>C+ or above in English - good extended response writing skills advisable</td>
</tr>
<tr>
<td></td>
<td>An ability to analyse a range of stimulus materials including maps, graphs, tables, aerial photographs and satellite images is also advisable.</td>
</tr>
<tr>
<td>German</td>
<td>Should have achieved Grade of C or above in Year 10 German</td>
</tr>
<tr>
<td>Information & Digital Technology</td>
<td>No formal pre-requisites</td>
</tr>
<tr>
<td>Information Processes & Technology</td>
<td>No formal pre-requisites</td>
</tr>
<tr>
<td>Industrial Technology Multimedia Technologies</td>
<td>No formal pre-requisites</td>
</tr>
<tr>
<td>Latin</td>
<td>Should have achieved a Grade of B in Year 10 Latin</td>
</tr>
<tr>
<td>Legal Studies</td>
<td>C+ or above in English - good extended response writing skills advisable.</td>
</tr>
<tr>
<td>Mathematics</td>
<td></td>
</tr>
<tr>
<td>Mathematics General</td>
<td>Completion of Yr 10 Mathematics</td>
</tr>
<tr>
<td>Mathematics (2 unit)</td>
<td>B+ or above in Mathematics Yr 10 Stage 5.2/5.3</td>
</tr>
<tr>
<td>Mathematics Extn 1 (3 unit)</td>
<td>A or above in Mathematics Yr 10 Stage 5.3</td>
</tr>
<tr>
<td>Mathematics Extn 2 (4 unit)</td>
<td>(Yr.12 only): candidates will be invited to join this class and must have attained at least a ROSA Grade in Preliminary Mathematics Extension 1 and Mathematics of A grade.</td>
</tr>
<tr>
<td>Modern History</td>
<td>Completion of Mandatory Australian History Stage 5 and completion of Stage 5 Elective History at Grade C+ above</td>
</tr>
<tr>
<td>Music</td>
<td></td>
</tr>
<tr>
<td>Music 1</td>
<td>Students will have done Mandatory Music in Yr. 7</td>
</tr>
<tr>
<td>Music 2</td>
<td>Students should have done Elective Music Yrs. 8-10 or satisfy the Head of Music (Curriculum) that they have achieved an equivalent standard</td>
</tr>
<tr>
<td>PD/H/PE</td>
<td>Students should have successfully completed PD/H/PE to Stage 5 level</td>
</tr>
<tr>
<td>Physics</td>
<td>B or above in Science and C+ or above in Advanced Maths at Yr 10 level</td>
</tr>
<tr>
<td>Senior Science</td>
<td>Grade D or above in Science at Yr 10 level</td>
</tr>
<tr>
<td>Software Design & Development</td>
<td>Strong programming skills if Yr. 10 Information and Software Technology completed OR Grade C or above in Stage 5 Advanced Maths course (strong analytical / logic skills)</td>
</tr>
<tr>
<td>Visual Arts</td>
<td>Grade D or above in Year 10 Visual Arts. Prior study recommended but not essential.</td>
</tr>
</tbody>
</table>
The Christian Studies syllabus is designed to help students come to know the God of the Bible through faith in Jesus Christ. The syllabus aims to demonstrate how the Bible makes the best sense of the world around us, life’s purpose and our wider responsibility. It aims to teach skills of reading Biblical texts as well as applying them and understanding their implications. It also aims to develop critical thinking skills and the ability to synthesise ideas. The Christian studies syllabus thereby supports the School’s vision to enable students to grow in wisdom, stature and favour with God and man.

Year 7 offers students an overview of the Bible. This framework focuses on the way the promises of God develop throughout the Bible with the aim of helping students to read the Bible intelligently and on its own terms. The year concludes with an in depth study of the Gospel accounts of the events surrounding Jesus’ Death and Resurrection with special focus on its significance.

A guide to understanding the New Testament begins the year 8 course. This is followed by a detailed study of Mark’s Gospel with an emphasis on the person and work of Jesus. The Year concludes with a study of early Christianity through reading the Book of Acts.

The Year 9 course begins with a study of Jesus teaching in parables with particular focus on understanding them in their original context before applying them to today. The next unit explores some key teachings of the Bible in relation to God, humanity, Jesus and the future. Students then have the opportunity to study the Christian life and explore the practical dimensions of living it out. The year concludes with an examination of the reliability and authenticity of the Biblical record.

Year 10 begins with an introduction to reading and critically reviewing contemporary Christian literature. The remainder of the year is given over to exploring various worldviews and the way they contrast and compare with a Christian worldview. In particular, students are exposed to the first eleven chapters of Genesis and the way it might inform the way one views the world. The year concludes with an exploration of the way in which a Biblical worldview might intersect with other subject areas such as the physical sciences, human sciences and the arts.
ENGLISH

ENGLISH IN YEARS 8 TO 10

The aim of English in Years 8 to 10 is to enable students to understand and use language effectively, appreciate, reflect on and enjoy the English language in a variety of texts, and to shape meaning in ways that are imaginative, interpretive, critical and powerful.

OBJECTIVES

Skills, knowledge and understanding
Through responding to and composing a wide range of texts and through the close study of texts, students will develop knowledge, understanding and skills in order to communicate through speaking, listening, reading, writing, viewing and representing. They will also learn to appreciate the significance of the intended audience and the way in which language shapes meaning through imaginative, creative, interpretive and critical expression.

Values and attitudes
Students will learn to value the benefits to be gained from a love of English, literature and learning and the power that language provides to explore and express views of themselves as well as the social, cultural, ethical, moral, spiritual and aesthetic dimensions of human experiences. Students will also develop an appreciation of effective communication and the role of language in developing positive interaction and cooperation with others, thereby providing them with the independence to be gained from thinking imaginatively, creatively, interpretively and critically.

Texts
In each Year of Stage 4 and Stage 5, students study examples of:
> spoken texts
> print texts
> visual texts
> media, multimedia and digital texts

Across each stage, the selection of texts gives students experience of:
> texts which are widely regarded as quality literature
> a widely defined Australian literature including texts that give insight into Aboriginal experiences in Australia
> a wide range of literary texts from other countries and times, including poetry, drama scripts, prose fiction and picture books
> texts written about intercultural experiences
> texts that provide insights about the peoples and cultures of Asia
> every-day and workplace texts
> a wide range of cultural, social and gender perspectives, popular and youth cultures
> texts that include aspects of environmental and social sustainability
> nonfiction, picture books, graphic novels
> an appropriate range of digital texts, including film, media and multimedia

Cross-curriculum priorities
> Aboriginal and Torres Strait Islander histories and cultures
> Asia and Australia’s engagement with Asia
> Sustainability

General capabilities
> Critical and creative thinking
> Ethical understanding
> Information and communication technology capability
> Intercultural understanding
> Literacy
> Numeracy
> Personal and social capability

Other learning across the curriculum area:
> Civics and citizenship
> Difference and diversity
> Work and enterprise

MAIN TOPICS COVERED

Year 8:
> Poetry
> Film Study Anime: Miyazaki, Spirited Away
> Power and Powerlessness: Steinbeck, Of Mice and Men
> Writing Skills
> Auteur Study Alfred Hitchcock
> Novel Study: Louis Nowra, Into That Forest
> Metamorphosis
> Shakespearean Comedy: A Midsummer Night’s Dream

Year 9:
> Novel Study 1
> Australian Memoirs
> Poetry
> Research Project
> The Documentary
> Language Skills
> Tales from Ovid Fate
> Shakespeare: Romeo and Juliet or The Merchant of Venice
> Novel Study 2

Year 10:
> Novel Study
> Drama Study: Pinter, The Dumb Waiter
> Film Study
> Poetry: Dramatic Monologues
> Skills
> Graphic Novel study
> Shakespearean Tragedy: Macbeth
> Text Study and Story Writing
The importance of Geographic Inquiry! The children of today will spend most part of their lives in a Century of accelerating change. We need, therefore, to be concerned with the future as much, if not more than, the present or the past. Author unknown

Geography allows students to plan for the future by assessing how people interact with each other and their environments, both presently and in the past. It is able to do this effectively because of its unique ability as a discipline to traverse both the scientific and humanities’ approaches to inquiry.

The new Trinity Grammar Field Studies Centre provides a unique and exciting opportunity for Year 8 Geography to be taught at this unique location in Huskisson. BOSTES maintains that fieldwork is an essential part of the study of Geography. It is a geographical tool that facilitates the understanding of geographical processes and geographical inquiry. Fieldwork can enhance learning opportunities for a wide range of students because it caters for a variety of teaching and learning styles.

Students will meet BOSTES Stage 4 Geography curriculum outcomes by participating in intensive Field Studies experiences using geographical tools and skills in the world around them to develop knowledge, understanding, communication, research, analysis and group work skills. Students will learn by applying their practical experiences to their theoretical learning. Students will incorporate practical and theoretical components into studies of:

> Investigating Our World
> Global Environment - Rainforests,
> Global Environment - Estuarine Systems
> Global Environments - Wetlands,
> Global Issues and the Role of Citizenship
> Global Change - Globalisation of the Steel Industry
> Global Change - Global Inequalities

We should study Geography in order to:

> develop an understanding of our role in the world, individually, locally, nationally and globally,
> develop an empathy with other cultures, including the Aboriginal Cultures and their perspectives on the environment,
> develop values and attitudes towards people and environments which are not introspective but which encourage responsible living and management,
> develop an analytical and interpretative approach to world conflict, political affairs and the innate inequality within the world,
> develop the fundamental skills of literacy, research, oral and aural communication, observation, recording and field work,
> develop an ability to embrace new Information Technologies through the use of the Internet and other computer based technologies including multimedia resources,
> develop skills to become a positive contributor to domestic and international affairs by being a responsible citizen and participating in the global responsibility of sustainable development and ecological protection,
> develop Geographic skills such as mapping, satellite image interpretation, graphing, calculating and weather chart interpretation through general educational skills of research, analysis, interpretation, synthesis and communication.

In Years 7-10 where Geography is mandatory, a scholarly approach reflecting academic rigour will encourage students to challenge the way they think about the world, not through a specific content area but through the development of key Geographic concepts.
<table>
<thead>
<tr>
<th>YEAR</th>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>TERM 4</td>
</tr>
<tr>
<td></td>
<td>Global Issues and the Role of Citizenship</td>
</tr>
<tr>
<td></td>
<td>→ Global geographical issues</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Investigating Australia’s Physical Environments</td>
</tr>
<tr>
<td></td>
<td>→ The Australian continent</td>
</tr>
<tr>
<td></td>
<td>→ Physical Characteristics that make Australia unique</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Issues in Australian Environments</td>
</tr>
<tr>
<td></td>
<td>Impacts of urban growth & decline</td>
</tr>
<tr>
<td></td>
<td>→ key geographic processes</td>
</tr>
<tr>
<td></td>
<td>→ perceptions & roles of stakeholders</td>
</tr>
<tr>
<td></td>
<td>→ management</td>
</tr>
<tr>
<td></td>
<td>Australia’s Regional & Global Context</td>
</tr>
<tr>
<td></td>
<td>→ Overview: Regional & global links</td>
</tr>
</tbody>
</table>

Geographic inquiry is research based and requires students to develop their ability to interpret, analyse, empathise and communicate their knowledge and understanding of the complex and dynamic world in which we live. Geography challenges personal perceptions and attitudes to the world, as it is fundamentally concerned with ‘me, my role and my responsibilities in the world’.
WHY LEARN HISTORY?

Not to know what happened before you were born is to remain forever a child.

> History builds on our innate curiosity about the past. It provides the basis for inquiry into our personal, community, national and international heritage.

> History helps us to understand the complex nature of society: of people, problems, issues and institutions that have shaped our cultural heritage.

> History develops a sense of historical perspective. This involves a sense of time, an understanding of cause and effect and an appreciation of the interaction of past and present.

> History can help young people to develop a personal scale of values and a sense of responsibility to themselves and society.

> History provides an understanding of both national and international affairs. This is particularly important in a world constantly shrinking by developments in communication and transportation.

> History is a recognised discipline which utilises and develops the fundamental skills of reading, writing, speaking, listening, research and observation. In the process it draws on many fields of enquiry.

> History enables students to cope with the demands of an increasingly technological society by encouraging the cultivation of balance, judgement, objectivity and flexibility.

> History plays a significant role in meeting the need for every Australian to know about, value and be able to participate effectively in the institutions and processes that characterise Australian society.

> History is of interest to people of all ages. History is everybody’s story. It can contribute to the education of all students of all abilities.

AIMS - YEAR 7 – 10

> Help students to understand, and empathise with, human activity through the pursuit of historical knowledge.

> Ensure that students’ historical knowledge is firmly founded in an understanding of the nature of evidence and use of historical sources both primary and secondary.

> Promote an understanding of the nature of cause and consequence; continuity and change; similarity and difference; progress and regression.

> Develop skills of investigation, evaluation and communication; using historical knowledge and understanding and relevant evidence to create appropriate historical texts, including ICT, for different audiences.

> Stimulate an enthusiasm for the past, providing a basis for further study and the pursuit of personal interest.

> Help students, through a study of Australian history, to understand and participate in the institutions and processes that characterise Australian society.

> Promote an understanding of the modern world.

TOPIC AREA TO BE COVERED

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>AREA TO BE COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Depth Study 3b: Ancient China</td>
</tr>
<tr>
<td>2</td>
<td>Depth Study 4b: Medieval Europe c.590 - c.1500 AD</td>
</tr>
<tr>
<td>3</td>
<td>Depth Study 5a: Angkor/Khmer c.802 - c.1431 AD</td>
</tr>
<tr>
<td>4</td>
<td>Depth Study 6c: Spanish Conquest of the Americas c.1492 - c.1572 AD</td>
</tr>
</tbody>
</table>

THE ANCIENT WORLD TO THE MODERN WORLD

The Stage 4 curriculum provides a study of the nature of history and historical sources, both archaeological and written. Students investigate ancient history from the time of the earliest human communities to the end of the ancient period (approximately 6000 BC - c.AD 650). It was a period defined by the development of cultural practices and organised societies, including Australia, Egypt, Greece, Rome, India and China.

Students study a range of depth studies from the end of the ancient period to the beginning of the modern period (c. AD 650 - c. 1750). During this period, major civilisations around the world came into contact with each other. Social, economic, religious and political beliefs were often challenged and significantly changed, underpinning the shaping of the modern world.
THE MODERN WORLD AND AUSTRALIA

The Stage 5 curriculum provides a study of the history of the making of the modern world from 1750 to 1945. It was a period of industrialisation and rapid change in the ways people lived, worked and thought. It was an era of nationalism and imperialism, and the colonisation of Australia was part of the expansion of European power. The period culminated in World War I (1914-1918) and World War II (1939-1945).

The history of the modern world and Australia from 1945 to the present, with an emphasis on Australia on its global context, follows. The twentieth century became a critical period in Australia’s social, cultural, economic and political development. The transformation of the modern world during a time of political turmoil, global conflict and international cooperation provides a necessary context for understanding Australia’s development, its place within the Asia-Pacific region, and its global standing.

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>AREA TO BE COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Constructing History</td>
<td>Local History</td>
</tr>
<tr>
<td></td>
<td>Biography</td>
</tr>
<tr>
<td></td>
<td>Family History</td>
</tr>
<tr>
<td></td>
<td>Film as History</td>
</tr>
<tr>
<td></td>
<td>Historical Fiction</td>
</tr>
<tr>
<td></td>
<td>Heritage and Reconstructions</td>
</tr>
<tr>
<td></td>
<td>Conservation</td>
</tr>
<tr>
<td></td>
<td>A history website/CD-ROM</td>
</tr>
<tr>
<td>2 Ancient, Medieval and Early Modern Societies: Medieval and Early Modern Europe</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I. Martin Luther and the European Reformation</td>
</tr>
<tr>
<td></td>
<td>Luther and The 1517 Reformation</td>
</tr>
<tr>
<td></td>
<td>Luther and the German States</td>
</tr>
<tr>
<td></td>
<td>Calvin and Swiss Reformation</td>
</tr>
<tr>
<td></td>
<td>Tyndale and the English Reformation</td>
</tr>
<tr>
<td>2. Stuart Britain c.1603-1689</td>
<td></td>
</tr>
<tr>
<td></td>
<td>James I and Roman Catholicism</td>
</tr>
<tr>
<td></td>
<td>Charles I and Parliament</td>
</tr>
<tr>
<td></td>
<td>English Civil War and Republicanism</td>
</tr>
<tr>
<td></td>
<td>1688/9 and Constitutional Monarchy</td>
</tr>
<tr>
<td>3 Thematic Studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Areas of Study: Civil Rights and Politics in the Modern World)</td>
</tr>
<tr>
<td></td>
<td>I. Civil Rights and The French Revolution</td>
</tr>
<tr>
<td></td>
<td>Absolutism</td>
</tr>
<tr>
<td></td>
<td>French Revolution</td>
</tr>
<tr>
<td></td>
<td>Napoleon</td>
</tr>
<tr>
<td>II. USA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>War of Independence</td>
</tr>
<tr>
<td></td>
<td>Slavery</td>
</tr>
<tr>
<td></td>
<td>Civil War</td>
</tr>
<tr>
<td></td>
<td>President Lincoln</td>
</tr>
<tr>
<td></td>
<td>Civil Rights 1919 – 1939</td>
</tr>
<tr>
<td></td>
<td>‘Reds and Blacks’ 1950s</td>
</tr>
<tr>
<td></td>
<td>Civil Rights Movement 1960s</td>
</tr>
</tbody>
</table>

The Stage 5 History (Mandatory) course develops particular skills in interpretation, analysis and empathy (i.e. the use of historical terms and concepts), research: (i.e. collecting, organising and evaluating of information) communication: (i.e. selecting appropriate forms and presenting well-structured texts using evidence and a variety of multimedia processes); and ICT: (i.e. Comprehending and using historical sources, including a website.)
LANGUAGES
CLASSICAL AND MODERN

All boys must study at least one language in Year 8 only.
For details of the languages offered, please refer to pages 21-23 of this booklet.

MATHEMATICS

The changing nature of Mathematics is reflected in the current and new syllabus. The aim is to develop students’ mathematical thinking, understanding, competence and confidence in the application of mathematics, their creativity, enjoyment and appreciation for the subject, and their engagement in lifelong learning. All students study Mathematics in 7 – 10 (i.e. Stage 4 and 5).

COURSE CONTENT AND OVERVIEW

BOSTES recently endorsed and released the new Mathematics K – 10 Syllabus. Implementation of the new syllabus commenced in 2014 (Years 7 and 9) and in 2015 (Years 8 and 10). The new syllabus includes the agreed content of the Australian curriculum in Mathematics along with additional Stage (content) statements and Outcomes for NSW schools. Many of the features of the existing syllabus have been kept. The Australian Curriculum in Mathematics is structured according to Year of Schooling whilst the new NSW Mathematics K – 10 Syllabus retains the organisation of content in Stages of Learning with several exit points (similar to the present Stages of 1 to 5 (5.1/5.2/5.3). The aims of the new syllabus are for students to:

> engage in learning experiences that reflect a sequential and logical approach to learning in Mathematics
> learn at a level of challenge appropriate to their needs
> develop their skills in Working Mathematically in an integrated way

There are three content strands and these include:

Number and Algebra where students
> develop efficient strategies for numerical calculation, recognise patterns, describe relationships and apply algebraic techniques and generalisation

Measurement and Geometry where students
> identify, visualise and quantify measures and the attributes of shapes and objects, and explore measurement concepts and geometric relationships, applying formulas, strategies and geometric reasoning in the solution of problems

Statistics and Probability where students
> collect, represent, analyse, interpret and evaluate data, assign and use probabilities, and make sound judgements

New topics such as transformations on the Cartesian plane, Venn Diagrams and bivariate data analysis are introduced in Stage 5.2 and 5.3 and for most this will be core work. The new Working Mathematically strand has five components, namely Communicating, Problem Solving, Reasoning, Understanding and Fluency and these are embedded in each sub-strand along with (for the first time) specific outcomes for Communicating, Problem Solving and Reasoning. Broadly, students develop understanding and fluency in mathematics through inquiry, exploring and connecting mathematical concepts, choosing and applying problem-solving skills and mathematical techniques, communication and reasoning. Working Mathematically is embedded in each of the three strands mentioned.

At Trinity Grammar School all boys at the end of their Year 10 schooling will be working towards achieving most or all of the Mathematics Stage 5.1 Outcomes (as a minimum). We acknowledge from time-to-time some boys with specific learning needs may follow a modified programme which includes adjustments to teaching, learning and assessment tasks. A large number of our boys work towards learning (at the minimum) most or all of the content of Mathematics Stage 5.2 and 5.3 in preparation for IB, Preliminary and HSC Mathematics courses. The following diagram (taken from the 2012 NSW BOSTES Mathematics K – 10 Syllabus Volume 2) identifies the place of the Mathematics K – 10 Syllabus in the curriculum; but more importantly the available pathways of learning in Mathematics from Stage 4 to Stage 6 (HSC). A separate Mathematics curriculum is available for boys that choose to qualify for the International Baccalaureate.
MATHEMATICS STAGE 4
(including Life Skills outcomes and content)

5.1
5.1/5.2
5.2
5.2/5.3
5.3

Stage 6 Mathematics Life Skills
Preliminary Mathematics General (BDC*)
Preliminary Mathematics ('2 Unit') (BDC*)
Preliminary Mathematics and Mathematics Extension 1 (BDC*)

Stage 6 Mathematics Life Skills
HSC Mathematics General 1 (CEC**) HSC Mathematics General 2 (CEC**) HSC Mathematics ('2 Unit') (BDC*) HSC Mathematics Extension 1 (BDC*) HSC Mathematics Extension 1 and Mathematics Extension 2 (BDC*)

Community, other education and learning, and workplace pathways

KEY
Usual Pathway
Other Available Pathway

* BDC – Board Developed Course (HSC BDCs are examined at the HSC).
** CEC – Content Endorsed Course (HSC CECs are not examined at the HSC).

The HSC Mathematics General 1 course (two units of study in the HSC year) is a Content Endorsed Course and cannot be used to meet the requirement that, to be eligible for the HSC award, students must study at least six units of Board Developed Courses. Also, the two units of study for the HSC Mathematics General 1 course cannot be counted in the 10 units required for the calculation of an ATAR. For further information, please refer to the Board’s Assessment Certification Examination (ACE) website.
Year 7 and 8 (generally Stage 4)

Students who have achieved Stage 4 outcomes use mathematical terminology, algebraic notation, diagrams, text and tables to communicate mathematical ideas, and link concepts and processes within and between mathematical contexts. They apply their mathematical skills and understanding in analysing real-life situations and in systematically formulating questions or problems that they then explore and solve, using technology where appropriate. In solving particular problems, they compare the strengths and weaknesses of different strategies and solutions.

They will have developed a range of mental strategies to enhance their computational skills. They operate competently with directed numbers, fractions, percentages, mixed numerals and decimals and apply these in a range of practical contexts, such as problems related to discounts and profit and loss. They are familiar with the concepts of ratio, rates and the probability of simple and complementary events and apply these when solving problems. They use index notation for numbers with positive integral indices and explore prime factorisation, squares and related square roots, and cubes and related cube roots. Students investigate special groups of positive whole numbers, divisibility tests and other counting systems.

Extending and generalising number patterns leads students into an understanding of pronumerals and the language of algebra, including index notation. Students simplify algebraic expressions, substitute into algebraic expressions and formulae, and expand and factorise algebraic expressions. They solve simple linear equations, inequalities, and word problems. They develop tables of values from simple relationships and illustrate these relationships on the number plane.

Students construct and interpret line, sector, travel, step and conversion graphs, dot plots, stem-and-leaf plots, divided bar graphs and frequency tables and histograms. In analysing data, they consider both discrete and continuous variables, sampling versus census, prediction and possible misrepresentation of data, along with calculating the mean, mode, median and range.

They will find the area and perimeter of a variety of polygons, circles, and simple composite figures, the surface area and volume of rectangular and triangular prisms, and the volume of cylinders and right prisms. Pythagoras’ theorem is used to calculate the distance between two points. They describe the limit of accuracy of their measures, interpret and use tables and charts related to time, and apply their understanding of Australian and world time zones to solve problems.

Their knowledge of the properties of two- and three-dimensional geometrical figures, angles, parallel lines, perpendicular lines, congruent figures, similar figures and scale drawings, enables them to solve numerical exercises relating to finding unknown lengths and angles in figures.

Years 9 and 10 (generally Stage 5)

The syllabus has been modified for where 5.1 is a subset of 5.2 which is a subset of 5.3. It is expected that the average student will complete all of 5.1 and 5.2 by the end of Year 10.

Stage 5.1

Students who have achieved Stage 5.1 outcomes explain and verify mathematical relationships, ask and explore questions which can be solved using mathematics, and link mathematical ideas to existing knowledge and understanding. They use mathematical language and notation to explain mathematical ideas, and interpret tables, diagrams and text in mathematical situations.

Students apply their knowledge of percentages, fractions and decimals to problems involving consumer situations related to earning and spending money, and simple and compound interest. They simplify and evaluate arithmetic expressions using index laws and express numbers in scientific notation using both positive and negative powers of ten.

Students apply the index laws to simplify algebraic expressions. They determine the midpoint, length and gradient of intervals on the number plane and draw graphs of linear and simple non-linear relationships.

Their statistical skills are extended to include grouping data into class intervals and constructing and interpreting cumulative frequency tables, histograms and polygons. Students determine relative frequency and theoretical probability.

Skills in measurement are further developed to include the use of formulae when calculating the area and perimeter of composite figures. Students apply right-angled triangle trigonometry to practical situations, including those involving angles of elevation and depression.
Stage 5.2

Students who have achieved the syllabus outcomes up to and including Stage 5.2 outcomes, ask questions that can be explored using mathematics, and use mathematical arguments to reach and justify conclusions. When communicating mathematical ideas, they use appropriate mathematical language and algebraic, statistical and other notations and conventions in written, oral or graphical form. Students use suitable problem-solving strategies which include selecting and organising key information and they extend their inquiries by identifying and working on related problems.

They can apply their knowledge of percentages, fractions and decimals to problems involving conversion of rates and consumer situations related to compound interest, depreciation and successive discounts. They express recurring decimals as fractions, and round numbers to a specified number of significant figures.

Also, students solve non-routine problems in algebra and apply the index laws to simplify, expand and factorise algebraic expressions.

Statistical skills are extended to include descriptions of distributions and the construction of box-and-whisker plots. Student analysis of data includes determining upper and lower quartiles and standard deviation.

They extend their skills in measurement to calculations of the area and perimeter of complex composite figures, the volume of pyramids, cones, spheres and composite solids, and the surface area of cylinders and composite solids. In geometry, they use deductive reasoning in numerical and non-numerical problems, drawing on their knowledge of the properties of similar and congruent triangles, the angle properties of polygons and the properties of quadrilaterals, including diagonal properties.

Stage 5.3

The students who have achieved the syllabus outcomes, up to and including Stage 5.3 outcomes, use deductive reasoning in problem solving and in presenting arguments and formal proofs. They interpret and apply formal definitions and generalisations and connect and apply mathematical ideas within and across topics.

They can calculate the probability of compound events, operate with irrational numbers and extend their knowledge of the number system to include all real numbers. They apply algebra to analysing and describing physical phenomena and rates of change. Algebraic skills are extended to expanding binomial products, factorising quadratic expressions, and solving literal equations, inequalities, quadratic and simultaneous equations. They generate, describe and graph equations of straight lines, parabolas, cubics, hyperbolae, circles and exponential functions, and are able to graph regions determined by inequalities.

Students calculate the surface areas of pyramids, cones and spheres and explore and use similarity relationships for area and volume. They determine exact trigonometric ratios for 30°, 45° and 60°, extend trigonometric ratios to obtuse angles and sketch sine and cosine curves. Students apply the sine and cosine rules for finding unknown angles and/or sides in non-right-angled triangles. Their knowledge of a wide range of geometrical facts and relationships is used to prove general statements in geometry, extending the concepts of similarity and congruence to a more generalised application. Students prove Pythagoras’ theorem and the properties of triangles and quadrilaterals.
PERSONAL DEVELOPMENT, HEALTH, AND PHYSICAL EDUCATION

The programme of study in Personal Development, Health and Physical Education at Trinity Grammar School is comprehensive and sequential in nature. It has been designed on a K-12 basis with Years 7-10 building on the foundation of learning acquired by students in the Preparatory and Junior Schools and providing the springboard into additional studies in Years 9-12.

Trinity Grammar School has developed an integrated and co-ordinated approach to the implementation of Personal Development, Health and Physical Education. The formal components of the course are supported by the Life Skills programme implemented through House periods, along with the Christian Studies and Chapel programmes. The Year 9 Kaloona Camp and Peer Support programmes also make significant contributions toward the Personal Development, Health and Physical Education programme. This co-ordinated approach is essential as it provides students at Trinity Grammar School with the opportunity to explore many wide-ranging Personal Development issues within a Christian framework.

The course is concerned with the development of the whole person and the improvement in the quality of life for all. It aims to develop in students the ability to make informed health decisions by providing them with the appropriate knowledge, skills and values. It is founded on a broadly based notion of health, which involves the physical component in addition to the social, emotional, and spiritual well-being of the individual.

Topics covered in Year 8 include:
- Risky Business (a broad study of disabled sports)
- Object manipulation skills (a general skills unit involving bats, racquets etc)
- Relating & Coping (a unit that explores issues surrounding well-being and resilience)
- Swim and Survive
- Run for Fun (Fitness based practical unit)

Topics covered in Year 9 include:
- Dance party
- Striking games
- What about me?
- Evaluating performance
- Volleyball
- It’s your choice
- Passing games
- Fitness for life

Topics covered in Year 10 include:
- Drive to Survive
- Lacrosse
- Bronze Medallion
- Triumph & Harmony
- Flag Footy
- The Club
- Hybrid Games

SCIENCE

The basic philosophy of the Junior Science Course in Stage 4 (i.e. Years 7 and 8) and Stage 5 (i.e. Years 9 and 10) is to provide experiences in Science which will contribute towards the development of each student’s understanding, skills and attitudes and encourage a genuine curiosity for the natural world. With the advent of the new National Curriculum for Science in 2014 (being adopted in Years 7 and 9 in 2014, then Years 8 and 10 in 2015), there have been some changes to the structure and emphases of the curriculum outcomes across Stages 4 and 5, whilst largely maintaining essentially similar content.

The National Curriculum for Science, as issued by BOSTES, covers three broad areas: Knowledge and Understanding (four parts – Physical World, Living World, Chemical World and Earth & Space), Skills (investigations involving both first-hand and second-hand data/information) and Attitudes & Values.

There are also three Cross-Curriculum Priorities embedded in the syllabus for each Stage: Aboriginal Histories/Culture, Engagement with Asia and Sustainability.

YEARS 8 AND 9 SCIENCE

The Science course in Year 8 and Year 9 is similar in approach to the course covered in Year 7. It is an integrated context-based course. The course deliberately has a significant practical component. Through additional topics and extension activities, scope is provided for the range of abilities and interests of individual students and classes. In each Stage the students will be required to carry out an Individual Science Project, which will involve questioning, planning, research, practical investigation, analysis and reporting.

The Outdoor Education Experience that every student undertakes in Year 9 fulfils a vital role in the overall Middle School Science programme. It provides a rich “in the field” experience which enables students to see, first hand, the importance and relevance of the Science they have been studying in the laboratory.

Topics covered in Year 8 Science are:
- I’ve bought a zoo
- Size Matters
- Full of Energy
- Individual first-hand investigation (guided)

Topics covered in Year 9 Science are:
- Do You have the Energy?
- Is there Anybody Out There?
- Elementary!
- Man vs Wild
YEARS 8-10 SCIENCE

In Year 10 topics covered in the Science course have been selected to give the students an introductory experience in each of the four Science Courses available in Stage 6 [i.e. Years 11 and 12]. That is Physics, Chemistry, Biology and Earth and Environmental Science. The purpose of this approach is to give each student a clear idea of the different character of these disciplines and his own particular aptitude and ability for each.

This should provide students with an informed basis on which to make course selections for Year 11 and a firm foundation on which to begin their HSC and IB studies. The scope, depth of treatment and approach in the work covered is adapted to take into account the diverse abilities of the students in the various classes.

However, there is sufficient common material to allow a large common component in the final examination.

Topics covered in Year 10 Science include

- Collisions in Sport (Physics)
- In Your Genes (Biology)
- Everyone Reacts (Chemistry)
- Down to Earth (Earth & Environmental Science)

The course completed by all students in Year 8 Technology (Mandatory) is a reinforcement and extension of their Year 7 work. Through exposure to a Design Process, students are taught and encouraged to organise their thinking and to devise and evaluate solutions to various design problems. Through this work it is intended that the students should become more intuitive and constructive in their thinking. The involved student will learn to appreciate that, through careful thought and application of their energies, new and better solutions to needs and wants can be developed to suit particular requirements. Many students will discover and develop their powers of lateral thinking. The students design and make in the workshop, enjoy eating the products of their learning in Food classes, study product design and record their work programme through extensive use of the School’s computer facilities. During Food classes students participate in hands-on food preparation and continue to develop their computing skills and concept of the design process. The importance of nutrition and the interrelationship between healthy eating and bodily well-being is emphasised. The course objectives allow students to know the food needs of an adolescent, read and interpret recipes correctly through experimentation and research and link food preparation and implementation to appropriate technology in the work laboratory. Product design and the importance of the market place are analysed during lessons in mobile telephone case design. Working time is divided between practical and computer rooms as required by the project being completed. Students also learn about societal implications, manufacturing and industry concepts as they relate to technological research, development and production.

As well as completing the mandatory course, students wishing to develop particular skills in working with wood and metal may do so by choosing Industrial Technology as an elective subject. Industrial Technology is a workshop-based course that values, and provides experiences for, the acquisition of fine hand working and machinery skills. An extensive theory component completes the student’s understanding of their practical studies. Graphics Technology and a more advanced Design and Technology course are also available as elective subjects for those students who wish to improve their communication skills, extend their thinking powers, and work extensively with computers.
ELECTIVE COURSES

COMMERCE

A study of Commerce should lead to the development of competence in students participating in the various roles that they adopt as members of society, such as: consumers, producers, workers, administrators, managers, unionists and voters. As well, students should increase their knowledge and understanding of the ways in which individuals, businesses and governments organise resources to provide goods and services which we desire to consume. While pursuing a study of Commerce, relevant skills should be developed and attitudes and values explored which should guide students towards personal competence and develop their confidence to participate responsibly in a commercial environment. Therefore, a study of Commerce makes a significant contribution to the total education of students. Commerce will assist students to participate in the changing environment and will instil skills which develop the enquiring mind.

PROGRAMME

The programme has been developed to meet the needs of the students to reflect the changing commercial environment and to draw upon the strengths of the teaching environment in the School:

<table>
<thead>
<tr>
<th>YEAR</th>
<th>TERM 4</th>
<th>TERM 1</th>
<th>TERM 2</th>
<th>TERM 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Money & Sport</td>
<td>Travel</td>
<td>Investing</td>
<td>e-Commerce</td>
</tr>
<tr>
<td>9</td>
<td>Consumer Choices</td>
<td>Personal Finance</td>
<td>Law in Society</td>
<td>Employment Issues</td>
</tr>
<tr>
<td>10</td>
<td>Political Involvement</td>
<td>Our Economy</td>
<td>Promoting and Selling</td>
<td>Towards Independence</td>
</tr>
</tbody>
</table>

The method used can vary from a contemporary issues approach to a case study approach.
"Drama", said Alfred Hitchcock, "is life without the boring bits".

Drama is a subject which enhances a student’s confidence and self esteem. How? By providing a means of self-expression where a student can develop practical, academic, social and interactive skills. The course is structured so that it gives a balance of creative and critical thinking, group and individual learning experiences, theoretical studies and practical activities. By the end of the course in Year 10, students will have:

- studied a culture beginning 2500 years ago with the Ancient Greeks and culminating with a study of modern theorists.
- mastered performance skills of improvisation, playbuilding, characterisation and script analysis.
- improved communication by using movement and vocal skills related to realistic and non realistic performance techniques.
- acquired experience in costume, set, promotional, lighting and sound design.
- developed skills in film drama.
- developed skills in creative writing of scripts and refined abilities in research.
- learnt productive skills in collaboration on group based projects.

YEAR 8

<table>
<thead>
<tr>
<th>CONTENT</th>
<th>OUTCOMES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improvisation and Status</td>
<td>learning 10 different theatre games, playbuilding and ensemble skills.</td>
</tr>
<tr>
<td>Ancient Greek Drama</td>
<td>performance of excerpts from “The Frogs” and “Oedipus Rex”.</td>
</tr>
<tr>
<td>Commedia Dell’Arte</td>
<td>study of drama techniques used by the Ancient Greeks.</td>
</tr>
<tr>
<td>Medieval Theatre</td>
<td>performance based around 6 stock characters, examining the influence on modern examples- e.g. “The Simpsons”.</td>
</tr>
<tr>
<td></td>
<td>study and perform in the style of comedy from the 1500’s.</td>
</tr>
</tbody>
</table>

YEAR 9

<table>
<thead>
<tr>
<th>CONTENT</th>
<th>OUTCOMES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text Study</td>
<td>character analysis and performance of a text.</td>
</tr>
<tr>
<td>An Introduction to Design</td>
<td>study and making of set, costume and promotion designs.</td>
</tr>
<tr>
<td>An Introduction to Film</td>
<td>principles of shooting and editing a chase scene around the School.</td>
</tr>
<tr>
<td>Special Study of Shakespeare</td>
<td>an overview of Shakespeare’s life, plays, theatre and influence. Updating Shakespeare’s work through modern interpretation.</td>
</tr>
</tbody>
</table>

YEAR 10

<table>
<thead>
<tr>
<th>CONTENT</th>
<th>OUTCOMES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Script Analysis and Characterisation</td>
<td>focus on performance of a scene and how to play a character using the techniques of Laban and Stanislavski.</td>
</tr>
<tr>
<td>Physical Theatre</td>
<td>using movement, mime and body language to communicate dramatic meaning.</td>
</tr>
<tr>
<td>Non Naturalistic theatre</td>
<td>studying and using stage techniques of Expressionism and Symbolism to communicate dreams and the subconscious.</td>
</tr>
<tr>
<td>Political Theatre</td>
<td>studying the techniques and ideas of Brecht, Boal and Fo and putting them into practice through self devised theatre on a political or social issue.</td>
</tr>
</tbody>
</table>

CHOOSE DRAMA IF…

- you want to think “outside the square”. Drama allows you to think freely, to play with ideas and re-express them in imaginative ways, using performance, design, computer or film making skills.
- enjoy co-operative and active learning.
- you want to climb the “corporate ladder”. Sounds strange that you should do Drama to get on in the business world? Just remember Maths and Science may just get you THE JOB, but Drama will give you the creative mind and people skills to get you THE PROMOTION!
IST is a practical project-based computing course. Students work through a variety of projects which develop problem solving, creativity and team work skills.

A variety of software will be used, such as Adobe Flash, Dreamweaver and Fireworks, Gamemaker Zooburst Prezi Weebly, Lego Mindstorm, and Scratch.

The projects focus on problem-solving, generating ideas, modelling, managing, communicating, collaborating and evaluating solutions. The core content is covered as part of the option topics. Students learn about past, current and emerging technologies, data, hardware, software and people involved in the field of information and software technology, legal, ethical, social and industrial issues.

Projects currently include:

Year 8 - Students have an overview of multimedia, create games in Scratch and develop a dynamic website incorporating frames, JavaScript and Flash.

Year 9 - Students design, build and program a lego robot to compete against other robots in a specified team challenge and produce a multimedia product to promote a significant School event.

Year 10 – students design produce and evaluate an interactive game using Flash ActionScript, Scratch, Gamemaker and create apps for mobile phones.

Considerations

There are four Higher School Certificate computing based courses offered by Trinity - Information Processes & Technology (IPT), Software Design & Development (SDD), Industrial Technology Multimedia Technologies (IMM) and Information and Digital Technology (IDT). Trinity also offers IB Computer Science (Years 11 & 12). Whilst the Years 8 – 10 elective course is NOT a prerequisite for selection of these courses, it is seen as a distinct advantage, particularly for the Software Design & Development and the IB Computer Science courses.

This IS a course geared for students who are looking to explore the use of information and software technology more deeply. Students will be exposed to a wide variety of software, and related theoretical concepts, in developing solutions to a range of problems.
Trinity provides its students the opportunity to undertake the study of three modern languages and two classical languages.

All students are required to learn at least one language up to, and including, Year 8. It is also important to note that it is mandatory for a student attempting the International Baccalaureate to present at least one foreign language. Students would do well to bear this in mind when planning their elective courses.

Choice of Languages

The broad range of elective courses available for Year 8 in 2015 makes it possible for a student to do one or two languages, out of a choice between Latin, French, German and Mandarin. Classical Greek and Japanese will be offered outside of the normal timetable.

- **LATIN**

 The emphasis in the study of Latin for boys in Years 7 to 10 is on developing an ability to read the language with ease and enjoyment. Boys who elect to study Latin in these Years learn its grammar, syntax and vocabulary thoroughly, and benefit in the following ways:

 - The cultures of Greece and Rome, together with that of the Hebrews, form the three great cornerstones of Western civilisation, providing the basis for our language and literature, our philosophy and ethics, our law, our art and architecture, and our social and political structures. The Romans made an enormous contribution to the development of civilised thought and culture; the empire which they created meant the spread of this civilisation throughout Europe; and from there we in Australia have become heirs to this cultural tradition. The study of Latin (and Classical Greek) is a direct means of developing an appreciation of some of the origins of Western civilisation.

 - Through learning the language of the ancient Romans it is possible to transport oneself to the world of two thousand years ago. Latin is the key to Roman history, life and literature. By the end of Year 10 boys acquire enough linguistic skills to begin to read passages of Latin written by the Romans themselves. They can gain a great deal of satisfaction from reading the actual words written by great writers of past ages, and a study of what they said ensures a broad perspective on the universality of human nature.

 - The very nature of the Latin language, with its grammatical inflections, its different word order, and its strict attention to relationships between words and sentences, compels a student to think seriously about language in general, and about English in particular. Skills in English are therefore enhanced: widening of vocabulary (60% of the vocabulary of English is derived from Latin), more accurate spelling, clearer and more concise writing of sentences in essays and assignments, and improved communication of ideas in both writing and speaking.

 - The study of Latin can also provide a student with a sounder understanding of many works of English literature with their numerous classical allusions and references, and of the many mottoes and phrases in Latin which are still found everywhere today.

 - The study of Latin calls for close inspection of the written word and careful analysis of the sentence structure, so that the learning of a language like Latin leads to disciplined thinking and organised habits of mind – skills which can be transferred to other areas and subjects and which are vital to success in any field of study.

 - There is also the enjoyment which comes from stretching the mind to its full capacity. Latin is not easy; it requires careful and methodical learning and considerable commitment. It is, however, a stimulating and intellectually demanding exercise, which fully extends the most able minds, and the skills and pleasure which it provides last a lifetime.

 - There are some who question the relevance of the study of Latin in this modern day. It is worth noting that the experiences which arise from learning Latin are those which broaden the mind, sharpen the intellect, and provide a real insight into the civilisation of mankind. Latin and Classical Greek can claim to provide these experiences, and a boy who is schooled in this way will emerge as humane and liberally educated. This is what is truly relevant.

- **CLASSICAL GREEK**

 The Romans always admired the language and culture of the Greeks, which they regarded as superior to their own. Educated Romans knew Greek equally as well as their own language, and they were thoroughly familiar with the great works of Greek literature, philosophy and art. As they gradually expanded their Empire, the Romans became, therefore, the medium through which Greek culture and ideas were spread throughout the Mediterranean world, and both have thus had their influence on the development of Western civilisation. Many Latin students find a great satisfaction in studying Greek and so gaining a complete Classical education. Much of what has been said above about the value of Latin and the way it is taught at Trinity applies to the study of Classical Greek.

 In addition, those boys who think that they may wish to pursue theological studies will find it of enormous benefit to begin their study of Greek now, since it is the same language as that used for the writing of the New Testament. Classical Greek is not offered as a timetabled elective course. Classes are held out of normal lesson times. Boys choosing Classical Greek are still required to choose two timetable subjects, one language and one other elective. Students who continue their study of Greek into Years 11 and 12 would usually have the benefit of timetabled classes.
The main objective of the Chinese language course is to promote the learning of Chinese language in an enjoyable and positive environment. Students who elect to study Chinese will find the course a rewarding and practical experience. Students will be placed in classes appropriate to their Chinese language background, which means native speakers and non-native speakers will be separated to maximise the learning experience of both groups. All sections of the course are examinable.

The Chinese language course in Years 8-10 covers the following areas:

- **Reading comprehension** for advancement of practical reading skills of various texts: articles (simple passages, comics, menus, magazines, newspapers and advertisements). Literature appreciation is promoted during the reading programme. Hanyu pinyin (romanisation of the Chinese language) is mainly used in the preliminary stages of the course with Chinese characters being introduced gradually.

- **Listening Comprehension** of modern Chinese through classroom exercises, audio and video resources and the online exercises of Quizlet and Language Perfect.

- **Speaking**: the objective is that by the end of Year 10, students will be able to communicate with other speakers of Chinese in a variety of situations.

- **Writing**: Students are introduced to pinyin (the romanisation of the Chinese language) in the early stages of their Chinese language programme to promote immediate writing skills. Chinese characters are introduced gradually through systematic class exercises.

- **Cultural and Historical Appreciation**: in the Years 8-10 course, students are introduced to many of the fascinating cultural and historical aspects of China.

Students will have the opportunity of participating in educational programmes with Trinity Grammar School’s link school in China: The Attached Middle School of the People’s University of China, Beijing.

Eligibility for Students Wishing to Study Chinese in Year 8

Students wishing to study Chinese from Year 8 need to select the appropriate course of Chinese studies. The final determination will be made by the Chinese Language teachers in accordance to the eligibility criteria below, as stated in the BOSTES of NSW Chinese Syllabus documents.

From Year 8, Trinity therefore conducts two Chinese courses:

(i) **Standard Chinese (Main stream/non-native)**

For those students with little or no Chinese language background and those who have studied Chinese ONLY as a second language at primary school or in Year 7.

(ii) **Advanced Chinese (Heritage and Native Speakers of Chinese)**

For those students who are deemed to be native speakers of the language or who are classified as “heritage speakers” as defined below.

HSC Chinese: Those wishing to do the Chinese Continuers Course in Years 11 and 12 must therefore be students who have been in a Mainstream Chinese class from Years 8 to 10.

HERITAGE SPEAKERS

Students typically have been brought up in a home where the language is used, and they have a connection to that culture. These students have some degree of understanding and knowledge of the language. They have received all or most of their formal education in schools where English (or another language different from the language of the course) is the medium of instructions. Students may have undertaken some study of the language in a community primary and/or secondary school in Australia. Students may have had formal education in a school where the language is the medium of instruction up to the age of ten.

Students have had no formal education in a school where the language is the medium of instruction beyond the year in which the students turns ten years of age (typically Year 4 or 5 of primary education).

NOTE:

For the purpose of determining eligibility:

1. Speakers of dialects and variants of a language are considered to be speakers of the standard language.
2. Formal education is 'education provided in the system of schools... that normally constitute(s) a continuous “ladder” of full-time education for children and young people...' (UNESCO International Standard Classification of Education, 1997)

FRENCH AND GERMAN

Both French and German are languages of historical and literary importance: so much of modern English has been influenced by both, and much can be derived from an exploration of this linguistic heritage. Both French and German remain significant world languages, and certainly any sojourn in Europe is greatly facilitated and enriched by knowledge of either language. It is hoped that students will have a lot of fun in the classroom and at the desk at home. All sections of the courses offered are examinable.

French and German courses in Years 8 -10 cover the following areas:

- **Reading Comprehension** for advancement of reading skills, (simple newspaper articles and advertisements) enjoyment and acquaintance with modern European literature (simple short stories, poetry, plays and songs, sometimes in abridged form) and/or youth magazines.
→ **Listening Comprehension** of modern conversational French and German, through classroom exercises, using a variety of the audio materials. By Year 10 the objective is functional understanding of good modern French and German spoken at moderate speed.

→ **Speaking:** the objective is that by the end of Year 10, students should be able to communicate orally in a variety of ‘traveller abroad’ situations, and converse freely on very simple topics.

→ **Grammar, Syntax, Vocabulary extension** through course books and the online exercises of Language Perfect and Quizlet which contain exercises in written composition, translation, verb drill and the like.

→ **Cultural background** of French and German speaking countries, as it emerges from set texts and various audio-visual media. A good deal of emphasis is also placed on the musical heritage of French and German speaking countries.

Students also have the opportunity, depending on interest shown, to travel to French and German speaking countries, as exchange students. The Head of Languages would be only too happy to discuss these possibilities with parents and students.

While the study of French or German is obviously a valid end in itself, providing a student with the opportunity for intellectual satisfaction and intercultural understanding, and with a (it is hoped, welcome) source of diversion from the “topic and textbook” style of learning, it is also an eminently practical pursuit. Acquiring a foreign language is gaining a skill for life. This skill for life does not come easily – it will be the result of a dedicated and consistent effort.

Perhaps the most important educational reason, however, for studying these languages is the fact that the course can never be finished. Indeed, the course will alter subtly from year to year, and there is nothing we can do about it, because the languages we study are living things, and all living things grow and change. The challenge for the learner is a life-long one, and absolute mastery of a foreign language is, for most of us, almost impossible. The benefit to any curriculum is obvious - no student, however gifted, will ever be able to rest on his laurels.

WHY TAKE MUSIC AS AN ELECTIVE?

Music is fun, interesting and challenging. In the Music Department boys have plenty of resources with which to create and perform music in styles which interest them, and to learn more about styles which may be less familiar. The keyboard/computer laboratory, the recording studio and a range of practice areas (suitable for music of all types) provide excellent environments in which boys can develop their musical skills.

WHAT TYPE OF MUSIC IS STUDIED?

All types, from Bach to Modern Jazz, from symphonies and music for concert band to choral music and modern stage musicals. You will ‘visit’ New Orleans and discover the beginnings of Dixieland, ‘travel’ to exotic Bali and hear percussion orchestras playing for the wayang puppet plays, discover how Beethoven wrote his magnificent symphonies, and go on set with the producers and composers of modern music.

WHAT ACTIVITIES ARE THERE IN MUSIC?

In Music classes you will:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>compose/arrange</td>
<td>perform</td>
<td>listen/analyse</td>
</tr>
</tbody>
</table>

→ **Composition** will begin when you learn to improvise. From there you will move on to compose music for all sorts of groups and different styles. By the end of Year 10, you will have a portfolio of your songs and instrumental pieces. You will write pieces in styles of music that you enjoy, which may be performed at the annual Composition Evening. Composition lessons will be conducted in the School’s keyboard laboratory.

→ **Performance** will involve you playing your instrument/voice as well as the keyboards in the laboratory.

→ **Listening** activities, you will explore some familiar and unfamiliar (yet exciting) areas of music. You will also learn the skill of writing down what you hear.

THE KEYBOARD/COMPUTER MUSIC LABORATORY.

In Elective Music, boys extend and develop the keyboard and computing skills learned in Year 7. These skills are the basis of the programme, especially in composition and aural work.

IS IT NECESSARY TO LEARN AN INSTRUMENT?

Students taking Music as an elective subject should be involved in one of the School’s ensembles - that is one of the Concert Bands or Orchestras, in the Chapel Choir, or in a Rock or Jazz group. It is a good idea for singers to learn an instrument, but this is not compulsory. Lessons are available at the School for all types of instruments.

WHAT ARE THE ADVANTAGES OF MUSIC?

Apart from a musical career (or the advantages to be gained from careers in teaching, sound engineering, radio and television etc.), Music is also one of the great pleasures of life. In a busy world, many professional people with musical ability use for recreation the skills they gained in their youth. If you are involved in Music as a co-curricular activity, the work done in elective Music will enhance your skill and enjoyment in the band, orchestra or choir. The study of Music is also known to increase a student’s overall academic performance.
PHOTOGRAPHIC & DIGITAL MEDIA

Photographic and Digital Media is a relatively new subject introduced by BOSTES. It can be commenced once the Stage 4 Visual Arts Mandatory course has been successfully completed. Trinity Grammar School’s Visual Arts Department offers this course in Years 8, 9 and 10.

New technologies have changed the possibilities of production of artworks and the rôle of the artist. Photographic and Digital Media enables students to:

- Develop and enjoy the practical ability to represent ideas and interests in photographic and digital works.
- Value and appreciate the significance of photographic and digital works in contemporary society.
- Understand and value the different beliefs and ideas that affect interpretation and meaning in photographic and digital media.
- Historically and critically interpret and appreciate photographic and digital works.

Why choose Photographic & Digital Media

- You want to develop skills in using digital cameras to record experiences, manipulate images and present an immediate point of view visually.
- You want to learn how to analyse images and gain skills on how to interpret the real meaning behind the image.
- You want to develop skills in recording and archiving images and video.

YEAR 8 PHOTOGRAPHIC & DIGITAL MEDIA

Photographic and Digital Media in Year 8 is an introductory course to Photographic and Digital Media in Years 9 and 10. It uses the same outcomes as the Stage 5 Photography and Digital Media course. This course offers an introduction to wet photography, learning how to shoot film, develop negatives and make prints. The students then move to explore digital photography and use different apps on their iPads and Photoshop on the computer to learn the basic tools to mask, animate and manipulate images captured on their iPads, cameras and phones.

Photographic and Digital Media enables students to:

- Learn how to use personal photographic devices and manipulate images immediately.
- Appreciate the significance these personal devices offer and understand the impact they can have in contemporary situations.
- Understand and value the different ways ideas and beliefs can be discussed and explored.
- Interpret and appreciate photographic and digital works from traditional and contemporary worlds.

Why choose Photographic and Digital Media

- You want to develop skills and understanding of your personal camera devices to record experiences, manipulate images and present a point of view.
- You want to learn how to analyse images and gain skills in how to interpret the real meaning behind the image.
- You want to develop skills in recording and archiving images and video.

YEAR 8 CONTENT OUTCOMES

<table>
<thead>
<tr>
<th>CONTENT</th>
<th>OUTCOMES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Into the Dark (Wet Photography)</td>
<td>Students are introduced to the mysteries of the darkroom and learn how to make artworks using photograms, pinhole cameras and finally SLR Cameras. They will learn how to shoot film, develop negatives and make prints.</td>
</tr>
<tr>
<td>Still/Life, Stop/Motion and other contradictions (iPads)</td>
<td>Students will use their iPads to create stop motion animations that allow everyday objects to come to life. This unit will teach students to use their photographic skills to construct narratives.</td>
</tr>
<tr>
<td>Ogres have layers but Photoshop has more (Digital Photographic Manipulation)</td>
<td>In this unit students will learn how to apply masks to their work in Photoshop and use adjustment layers to highlight certain areas in their photographs and add drama to an image.</td>
</tr>
<tr>
<td>Insert Caption Here (Digital Photographic Manipulation)</td>
<td>Students will look at incorporating text into their photographs to add meaning or subvert the meaning of the original image. They will learn how to distort text using perspective and use layer effects to create different textures.</td>
</tr>
</tbody>
</table>
YEAR 9

<table>
<thead>
<tr>
<th>CONTENT</th>
<th>OUTCOMES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interrupting the Process</td>
<td>Students create serendipitous images by interrupting the processes involved during the wet photography developing process. Students place objects/filters in front of the camera lens, interfere with the development of negatives to create new negatives by scratching into celluloid and interfering with light sensitive paper. Safer working procedures are included in this programme.</td>
</tr>
<tr>
<td>Truth, Beauty & Propaganda</td>
<td>Students investigate the role of the propaganda image throughout history and explore contemporary examples. They produce their own propaganda images using collage and digital manipulation.</td>
</tr>
<tr>
<td>Film Making</td>
<td>Students are exposed to concepts and practice of making films. Storyboarding is explored. Digital video cameras are used to capture raw footage. Various computer software is used to edit the film adding special effects, titles and soundtracks.</td>
</tr>
<tr>
<td>The Photographic Eye</td>
<td>Students build upon skills learnt earlier in the year. They develop the ability to communicate concepts through their use of photographic techniques and processes.</td>
</tr>
</tbody>
</table>

YEAR 10

<table>
<thead>
<tr>
<th>CONTENT</th>
<th>OUTCOMES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snap Judgements</td>
<td>Students explore this history of abstract photography and in doing so experience new ways of seeing. A series of B&W photographs is developed where meanings are revealed within the characteristics of the photograph. The qualities of abstract, aesthetic, political and creative photography are discussed and compared.</td>
</tr>
<tr>
<td>Social Issues</td>
<td>Cross curriculum Activity - Students collaborate with Visual Arts and Visual Design students to create an installation piece looking at social issues of their choice. They work in groups to present a visual and digital response in a range of media. Their installations will be displayed in the Delmar Gallery. They look at the history of performance and installation art in Australia and overseas.</td>
</tr>
<tr>
<td>Animation – Move Me</td>
<td>Students create a moving image influenced by experimental cinema. Imaginative responses, intuition and sensory perception are drawn upon to communicate personal meaning.</td>
</tr>
<tr>
<td>Surreality</td>
<td>Students will look at photography and Modernism. Through the conceptual framework they will look at the artist as agitator and social commentator. They will think about their own world view and create an image through collage and photo montage of various images to represent the disturbing viewpoint of the artist as critic.</td>
</tr>
</tbody>
</table>
The Technology and Design Department offers 3 separate elective courses, each providing unique learning experiences for the students.

→ **Design and Technology** goes beyond the workshop and discovers that research, design and evaluation are at least as important as manufacture in the production of quality products. This subject necessarily spends less time in the workshop than Industrial Technology, and places more emphasis on research, originality and computer generated folio production for each project completed.

→ **Graphics Technology** uses technical drawings and artistic images to convey messages as powerfully as words or numbers ever could. This subject develops conventional and computer based graphical communication skills.

→ **Industrial Technology** is essentially a workshop-based subject, but offers much more to the student who becomes fully involved with the experiences to be enjoyed while developing fine craftsmanship skills. This subject may be studied at Trinity Grammar School as Industrial Technology Wood or Industrial Technology Metal.

Design and Technology

The study of the Design and Technology Years 7–10 Syllabus will assist students to appreciate, and be informed about, a range of careers in design and technological innovation. Students will learn to critically analyse and reflect on the implications of design in order to develop their understanding of why some designs, technologies and processes perform better than others in meeting their intended purpose. Students will develop knowledge, appreciation and applied skills for understanding the interrelationships between design, technology, society, the individual and the environment. Design and Technology will appeal to students who like to research and think before they make objects, and then assemble a comprehensive computer generated folio that fully describes the design process they have followed to complete their design task.

People interpret and alter their environments in an attempt to improve the quality of their lives. Technologies constantly evolve and inevitably develop to the extent that they have an impact on the environment and on most aspects of our daily lives. As well as developing skills in contemporary technological processes, the capacity to adapt to rapid change, to collaborate, and to develop and express creative ideas is becoming the new foundation of design and technology learning, providing students with the capability to thrive in the emerging Australian and international economies and to meet the lifestyle challenges that may present themselves.

Australia needs future generations who understand the holistic nature of design and technology. Such people will need to be able to apply design processes, develop, communicate and justify solutions, create systems and use technologies to meet identified needs and opportunities. Student projects related to real-life contexts provide a rich setting for individuals and groups to develop holistic solutions and to discover underlying principles for quality design applications. They can investigate processes of design and technology in a responsible, safe, ethical and collaborative manner and in a range of design fields. Present and emerging technologies, innovation, enterprise and exploring preferred futures are considered in relation to their impact on society and environments.

Design and Technology provides broad experience in a range of contexts and builds on the know-how and know-why developed in Science and Technology K–6 and the foundation Technology (Mandatory) course. The design and development of quality projects gives students the opportunity to identify problems and opportunities, research and investigate existing solutions, analyse data and information, generate, justify and evaluate ideas, and experiment with technologies to manage and produce design projects. The diversity of approaches to design projects provides the scope to develop high-order thinking, future thinking and understanding of conceptual principles. The design process caters for a variety of student needs, abilities and interests. The flexible and creative consideration of parameters encourages students to take intellectual risks and experiment with resources when developing projects.

The development of functional and aesthetic design solutions allows students to be innovative and creative in their thinking and application. Students will develop the skills necessary for the safe use and maintenance of a variety of technologies in the production of their design projects. Information and Communication Technologies (ICT) are vital tools for this course. They are used to develop, communicate and research design solutions, communicate students’ design ideas and facilitate interactions with the wider community.

Core content areas

Core content is divided into areas that must be integrated with each project completed in each focus area. The areas are:

→ a holistic approach
→ design processes
→ activity of designers.

Design project

A design project is the main learning activity of students during a unit of work and culminates in the designed solution and documentation. The design project should be relevant to student needs and interests. It is expected that there will be increasing challenge offered to students in successive design projects to enhance the development of knowledge, understanding and skills.

Documentation of student work is used as a tool for student learning. The documentation provides the student with a means of recording all aspects of the design process used and the reasons for the decisions made, as well as any relevant case studies. The documentation will provide evidence of the investigation and research undertaken, experimentation, development and justification of ideas, the process of realisation and, finally, design project evaluation.

Focus areas of design

The focus areas of design provide meaningful contexts for design project work and support the development of knowledge and understanding of the various stages in designing, producing and evaluating. The study of a minimum of two focus areas is required for a 100-hour course and a minimum of three focus areas for a 200-hour course.

The focus areas of design include areas such as aeronautical, architectural, communication systems, engineering, food, furniture, graphical, industrial, information systems, landscape, packaging, promotional, structural, transport systems and even the flexibility to explore student-negotiated focus areas of design. Project topics will draw from these focus areas.
Key Competencies
Design and Technology Years 7–10 provides a defined context within which to develop general competencies considered essential for the acquisition of effective, higher-order thinking skills necessary for further education, work and everyday life. Students will:

> source, select and sequence information with regard to design research and idea generation, developing competence in collecting, analysing and organising information
> debate, describe, discuss and explain design-related issues in written, graphical and oral form, developing competence in communicating ideas and information
> work as individuals and as members of groups to conduct investigations and analysis, developing competence in planning and organising activities
> cooperate with individuals and groups, developing competence in working with others
> design, implement and evaluate solutions to broad-based problems, developing competence in solving problems
> plan, develop and modify design projects in areas including costing, quantities, measurement and time, developing competence in using mathematical ideas and techniques
> experiment with a range of tools, materials and techniques, developing competence in using technology.

Literacy
In Design and Technology Years 7–10 students are provided with opportunities to develop literacy skills, particularly information and technological literacy, in the recording and documenting of design ideas as they work through their design projects. Students will be engaged in using oral, written and visual language in responding to problems and the ideas of others. Students develop the use of subject-specific vocabulary to describe, classify and interpret their learning. Further, they develop and present designed solutions using a range of computing technology including word processing and desktop publishing. They evaluate information and construct text for specific audiences at various stages of design development.

Multiculturalism
Design and Technology students engage in design activities that often involve them in researching material from a variety of cultures, enhancing their appreciation of contributions from people of all backgrounds. The Design and Technology Years 7–10 Syllabus acknowledges and values cultural diversity and the contributions of the various groups.

Numeracy
In the development of solutions to design problems, students use numeracy concepts, such as size, proportion and measurement, as tools to assist in the communication of design ideas. Students in Design and Technology will draw on a range of mathematical concepts and skills as they survey, graph and describe trends and preferred futures.

Graphics Technology
Graphics Technology enables students to practise logical thought and decision-making while developing skills applicable to a range of domestic, commercial and leisure activities. They engage in both manual and computer-based forms of image generation and manipulation and develop knowledge of the wide application of graphics in a variety of contexts and an ever-increasing range of vocations. Graphics Technology also develops students’ technical and visual literacy, equipping them for participation in a technological world.

The study of Graphics Technology will develop in students an understanding of the significance of graphical communication and the techniques and technologies used to convey technical and non-technical ideas and information. They will learn about the application of these techniques and technologies in industrial, commercial and domestic contexts.

The use of graphical images to communicate information overcomes the barriers of time and linguistic, cultural and social differences. In an age of globalised industry and rapid technological development, where computer-aided design (CAD), computer-aided manufacture (CAM), interactive graphic design (IGD) and multimedia applications are widely used, the study of Graphics Technology is particularly relevant.

Graphics is a universal language and an important tool for thinking and communicating. Graphics Technology develops manipulative and cognitive skills in using a variety of tools, materials and techniques widely available in industrial, commercial and domestic settings. An important part of the cognitive process associated with this syllabus involves the generation and use of images, models and pictures. This includes the visualisation and manipulation of three-dimensional concepts and images and the interpretation and presentation of ideas graphically. Through the study of Graphics Technology students will develop the capacity to solve problems and generate and communicate solutions. They will become confident in the application of conventions and procedures that are essential to the global transfer of concepts and images irrespective of language barriers.

Through the study of Graphics Technology students become increasingly productive, creative, discriminating and confident in the development and use of a range of technologies relevant to current practice in graphics and graphics-related industries. The syllabus encourages the development of collaborative skills in the real and virtual worlds using intranet and/or extranet technologies, and fosters an understanding of the advantages and responsibilities that are associated with these processes.

The study of Graphics Technology in Years 7–10 develops in students an understanding of related work environments, while developing skills and understanding that will equip them for potential vocational pathways, future learning and leisure and lifestyle activities.

Graphics Technology Years 7–10 is an elective course that builds on the knowledge, skills and experiences developed in the study of the Technology (Mandatory) Years 7–8 Syllabus.

The major emphasis of the Graphics Technology Years 7–10 Syllabus is on students being actively involved in the planning, development and production of quality graphical presentations. Students will be provided with broad experiences to develop knowledge, understanding and skills in a range of media and areas of application.

Literacy
The syllabus provides extensive opportunities for the development and consolidation of student literacy with an emphasis on the development of visual and technical literacy.

Multiculturalism
Students will develop an awareness and appreciation of the contributions made by people from a variety of cultural backgrounds in the area of graphics. They will develop an understanding of the importance of graphics in overcoming linguistic barriers in the communication of information.
Numeracy

Numeracy skills are developed in all areas of Graphics Technology. Measurement, use of scales, application of 2D/3D coordinates, applied geometric constructions and digital units of measurement are integral to the core modules and options. Students experience numeracy concepts such as size, proportion and spatial relationships in both the real and virtual worlds.

Modules

The Graphics Technology Years 7–10 Syllabus content is organised into two core modules and thirteen option modules. Core modules are designed to provide a broad understanding of the principles and techniques associated with producing graphical presentations in a variety of styles and formats. Option modules allow students to develop knowledge, understanding and skills in specific graphics-related fields. Depending on the nature of the class, option modules will be chosen that most suit the abilities and interests of the class group.

Core modules are structured in a sequential manner, with the knowledge, understanding and skills developed in Core Module 1 applied and enhanced in Core Module 2. Option modules may be delivered concurrently to enable a thematic approach to the delivery of course content.

Each core module is designed to be taught in not less than 50 hours of planned learning experiences. Individual option modules will be delivered over 25 hours of planned learning experiences. Students will study four options in their 200-hour course. Option modules will be selected for each class group from the prescribed list shown below.

Essential content

All modules provide essential content designed to develop knowledge, understanding and skills related to the four key areas of:

- design, implement and present solutions specific to graphics technology, developing competence in solving problems
- use mathematical ideas and techniques in the sketching, measurement, drafting and manipulation of objects and images
- engage with a variety of software, hardware and drafting equipment associated with the graphics industry, developing competence in using technology.

Additional content

Students can move beyond the essential content in order to broaden and deepen their understanding and skills, and to extend their interest in particular aspects of Graphics Technology.

Additional content is introduced in Core Module 2 and in each option module. The course proceeds as shown opposite:

Key Competencies

The syllabus provides a structured context for the development of the key competencies considered essential for the acquisition of effective higher-order thinking skills. By following the course, students will learn to:

- design, implement and present solutions specific to graphics technology, developing competence in collecting, analysing, and organising information
- communicate ideas and information using a range of visual media and graphical representations appropriate to target audiences
- plan, prepare and present project work and sequence activities, developing competence in planning and organising activities
- cooperate with individuals and groups in structured and informal group projects, developing competence in working with others and teams

Industrial Technology Years 7–10

Industrial Technology Years 7–10 is an elective course that builds on the knowledge, skills and experiences developed in the Technology (Mandatory) Years 7–8 Syllabus. It is the subject designed for students who wish to spend most of their time in the workshop making quality products while perfecting the skills required to become independent craftsmen.

The study of Industrial Technology Years 7–10 provides students with opportunities to engage in a diverse range of creative and practical experiences using a variety of technologies widely available in industrial and domestic settings.

Industrial Technology Years 7–10 develops knowledge and understanding of materials and processes in students. Related knowledge and skills are developed through a specialised approach to the tools, materials and techniques employed in the planning, development, construction and evaluation of quality practical projects and processes. Critical thinking skills are developed through engagement with creative practical problem-solving activities. The syllabus has been designed to be inclusive of the needs, interests and aspirations of all students. Students develop responsibility for learning through a range of student-centred learning experiences.

Through the study of Industrial Technology Years 7–10 students develop knowledge relating to current and emerging technologies in
industrial and domestic settings. Students study the interrelationship of technologies, equipment and materials used in a variety of settings and develop skills through hands-on interaction with these in the design, planning and production of practical projects.

Industrial Technology Years 7–10 leads students to an awareness of the relationship between technology, industry, society and the environment, and develops their ability to make value judgements about issues, decisions and consequences arising from this interaction. Students develop an awareness of the importance of environmental sustainability in relation to the use of materials and technologies and their effects on people and society.

The study of Industrial Technology Years 7–10 develops in students an understanding of related work environments and Occupational Health and Safety (OHS) matters, while developing a range of skills that will equip them for future leisure and lifestyle activities, potential vocational pathways or future learning in the technology field.

The skills, knowledge and attitudes developed through the study of Industrial Technology Years 7–10 will enable students to make positive contributions to Australian industry and society, to express valued opinions and to make considered judgements as contributing members of society.

The major emphasis of the Industrial Technology Years 7–10 Syllabus is on students being actively involved in the planning, development and construction of quality practical projects. Students are provided with a range of theoretical and practical experiences to develop knowledge and skills in their selected focus area.

A project report is required for each practical project completed and will form part of the overall assessment of each module.

Focus areas and modules

This syllabus covers a number of focus areas in the field of technology. At Trinity we will offer the two focus areas in Metal and Timber.

Each focus area is divided into two compulsory core modules (50 hours each) that lead to a range of optional specialised modules to be studied for not less than 50 hours each. The core modules of each focus area include the design, production and evaluation of practical projects that develop basic understanding and skills. These are further enhanced through the specialised modules.

Individual modules (core and specialised) provide specific content related to the focus areas, which will be developed in the key areas of:

- Occupational Health and Safety (OHS)
- Materials, Tools and Techniques
- Design
- Links to Industry
- Workplace Communication
- Societal and Environmental Impact.

Modules are structured in a sequential manner, with the knowledge and skills developed in one module applied and enhanced through subsequent modules within the focus area. Consecutive modules may be delivered concurrently to maximise the use of resources.

For each module, additional content is provided in the classroom to enable students to explore focus areas to a greater depth and breadth. Additional content is designed to deepen and broaden students’ knowledge and skills in either or both practical and theoretical contexts.

A course in Industrial Technology syllabus may comprise:

- 1 focus area studied for 100 hours (core modules only); or
- 1 focus area studied for 200 hours (core modules plus 2 specialised modules).

It is not possible to construct a single course from more than one focus area.

<table>
<thead>
<tr>
<th>Focus Area</th>
<th>Core Module 50 hours</th>
<th>Core Module 50 hours</th>
<th>Specialised Module 50 hours</th>
<th>Specialised Module 50 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal</td>
<td>General Metal 1</td>
<td>General Metal 2</td>
<td>Fabrication 3</td>
<td>Fabrication 4</td>
</tr>
<tr>
<td>Timber</td>
<td>General Wood 1</td>
<td>General Wood 2</td>
<td>Cabinetetwork 3</td>
<td>Cabinetetwork 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wood Machining 3</td>
<td>Wood Machining 4</td>
</tr>
</tbody>
</table>

Key Competencies

The course structure and pedagogy provide extensive opportunities to develop the key competencies. Experiences in the development of a variety of practical projects ensure that all the key competencies are addressed. During the course, students learn to:

- source, select and sequence information about issues in a selected focus area, developing competence in collecting, analysing and organising information
- debate, describe, discuss and explain ideas and issues in written, graphic and oral form, developing competence in communicating ideas and information
- plan, prepare and present project work to meet a range of needs within set time frames, developing competence in planning and organising activities
- cooperate with individuals and groups, developing competence in working with others and teams
- design, implement and evaluate solutions to practical situations in a specific focus area, developing competence in solving problems
- plan, develop and modify projects including costing, quantities, measurement and time, developing competence in using mathematical ideas and techniques
- prepare practical projects using appropriate materials and equipment, developing competence in using technology.

Literacy

During the planning, construction and evaluation of practical projects students communicate ideas in oral, written and graphical forms. The use of industrial terminology and technical language is fostered and developed in all focus areas.

Numeracy

Numeracy skills are integral to the development of all practical projects through measurement, costing of materials and the interpretation and production of a variety of drawings.
TV PRODUCTION

TV Production is a school developed elective course for Years 9-10 which has been endorsed by the Board of Studies. Units in Sports Broadcasting, Advertising and Current Affairs are offered in Year 9; while units on Reality Television, Music Television and Television Drama are covered in Year 10.

It will offer practical experiences in operating camera, sound, lighting, writing, directing and switching in a three camera studio; as well as a critical analysis of how television creates meaning for an audience in each of the genres mentioned above.

A student who completes this elective will have extensive prior learning in film and television, thus providing a strong link with the choice of VET Entertainment, HSC Drama or International Baccalaureate Film in Years 11 and 12 which are offered at the school. The school is very well resourced to offer the course- having a dedicated theatre space with permanent lighting grid and bluescreen capabilities, as well as a control studio. It possesses 5 Sony broadcast cameras complete with tripods and dollies. In addition there are the necessary sound recording and mixing facilities, as well as monitors and digital vision switching equipment to offer professional experiences to the students electing to take this course. The school also employs two audio visual technicians who will offer technical support.

Instead of being passive consumers of television, students will become active makers and analysts of this significant area of influence on their lives.

YEAR 9

<table>
<thead>
<tr>
<th>CONTENT</th>
<th>OUTCOMES</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Art of Interview</td>
<td>➔ Using a three camera studio- vision and sound systems
 ➔ Conducting an effective interview</td>
</tr>
<tr>
<td>Advertising</td>
<td>➔ Television techniques of persuasion
 ➔ Making a TV advertisement selling the unsellable.</td>
</tr>
<tr>
<td>Sports Broadcasting</td>
<td>➔ The business of TV Sport- the role of alcohol, fast food and gambling
 ➔ TV campaign to promote a little known sport</td>
</tr>
<tr>
<td>Current Affairs</td>
<td>➔ Examining an issue in depth and using TV tabloid journalism</td>
</tr>
</tbody>
</table>

YEAR 10

<table>
<thead>
<tr>
<th>CONTENT</th>
<th>OUTCOMES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Television Drama</td>
<td>➔ Analysing Soap Operas as a form of TV Drama
 ➔ Three camera studio shoot of a soap opera scene</td>
</tr>
<tr>
<td>Music Video</td>
<td>➔ Gender stereotyping and the business of selling music
 ➔ Creating an original music video</td>
</tr>
<tr>
<td>Reality Television</td>
<td>➔ Social analysis of different reality television programs
 ➔ Developing an original Reality Television segment</td>
</tr>
</tbody>
</table>
WHY DO VISUAL ARTS?

The source of all art, science and technology - in fact all of civilisation - is what is called creative imagination, or the creative attitude. As Albert Einstein pointed out:

"Imagination is more important than knowledge"

Visual Arts develop creative problem solvers. We all have the potential to be creative, imaginative visually aware human beings. Our society needs these creative, critical thinkers. Studying visual arts develops the receptive, imaginative mind, to develop the ability to see beyond what is, to see what might be.

In Visual Arts students:
- Make artworks that build a body of work, developed over time, using an extended range of materials and techniques and various investigations of the world.
- Place great value on the development of their intellectual and practical approach to making art, critical judgement, reflective action and understanding of critical and historical studies of art.
- Develop their own interests, to be self motivated and be active learners and continue their own learning post-school.

Visual Arts builds understanding of the role of art, in all forms of media, in contemporary and historical cultures and visual worlds. In our modern societies many kinds of knowledge are managed through imagery and visual codes and a great deal of student knowledge is acquired in this way.

Visual Arts empowers students to engage in visual forms of communication, it serves to interpret visual images and allows students to organise such information.

Why should you choose Visual Arts?
- Because you have an interest in expressing imaginative ideas, feelings, and experiences in an artistic way using 2D, 3D or film/video.
- Because you like to make things, you are good at spatial relationships, textural relationships, visual relationships and combining images with text.
- Because you are good at solving problems in a creative way.
- Because you are interested in the world around you and how other people from other cultures and time periods have understood and expressed their ideas about the world.
- Because you are interested in a career in Architecture, Advertising, Design, Film and Television, Art Journalism, Photography, Illustration, Interior Design, Visual Design, Curator at a Gallery to name a few.
- Because you want to balance your academic studies with a creative practical course.

<table>
<thead>
<tr>
<th>YEAR 8</th>
<th>CONTENT</th>
<th>OUTCOMES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Man Made Spaces - The Illusion of Space Drawing/Painting Study architectural styles</td>
<td>Draw images using one and two point perspective. Ability to recreate correct perspective and proportions of outdoor scenes.</td>
<td></td>
</tr>
<tr>
<td>Man Made Spaces - Our Place - Our Space Print Making Study architectural features</td>
<td>An investigation of how ordinary spaces can be transformed through the use of interesting viewpoints. A structural exploration of experimental lino print techniques to create personal expressive images of the School environment.</td>
<td></td>
</tr>
<tr>
<td>Other Living Things New Zoo Animals Painting / collage Study Animals in art</td>
<td>Visit the Zoo and observe animal camouflage, animal textures and animal species (aquatic / birds / mammals). Create “new species” by combining, through observation and application of simulated textures and observed forms, a new kind of animal.</td>
<td></td>
</tr>
<tr>
<td>Other Living Things Fantasy Creatures Ceramics Study Fantasy Art</td>
<td>Using the work covered in the previous Term, the students will create a new species in ceramics. The 3-dimensional form will be considered. The application of texture and colour will inform the viewer of the special attributes of the new species.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>YEAR 9</th>
<th>CONTENT</th>
<th>OUTCOMES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landscape - A Different View Painting/Collage Australian Art History</td>
<td>Students explore early Australian Impressionism to complete their own landscape painting in this technique.</td>
<td></td>
</tr>
<tr>
<td>Landscape II Collage Australian Art History</td>
<td>Students continue their investigation into Australian art history and look at the modernists who use different materials to create surface and symbols on their artworks.</td>
<td></td>
</tr>
<tr>
<td>Native Flora Lino Printing Lino Print x 3 colour</td>
<td>Students learn the process of multi-coloured printing based on observation of the local flora. Students continue their exploration of expressive art in Australian Art history.</td>
<td></td>
</tr>
<tr>
<td>Ceramics Sculpture</td>
<td>Students learn about creating 3D form and using symbols to convey meaning. The students choose a topic to explore and create an artwork that uses specific symbols to tell a story or convey the meaning. Students look at modern sculpture in Australian art.</td>
<td></td>
</tr>
</tbody>
</table>
YEAR 10

CONTENT OUTCOMES

Self-Identity
- **Drawing**
 - Aboriginal art and Asian art
 Students explore different material and mediums while examining their own place in the world. Self-Identity is not portraiture but a combination of self and place and asking who am I? Students examine Aboriginal Art and art from Asia.

Social Issues
- **Installation Art**
 Students collaborate with the Photography class and Visual Design class to create an installation looking at social issues of their choice. They work in groups to present a visual and digital response in a range of media. Their installations will be displayed in Delmar Gallery. They look at the history of performance and installation art in Australia and overseas.

Self-Identity
- **Painting**
 Students explore the painting medium to express ideas / information / identity issues about themselves. They will explore paint on canvas and look at the Expressionist movement in Australian art.

Figures in the Environment
- **Painting**
 The students continue to develop their painting skills and look at the issue of landscape painting in Australia. They will paint on canvas and develop symbols to convey meaning. They will explore contemporary Australian painting.

The Visual Arts at Trinity Grammar School

The facilities for Visual Arts and Design at Trinity are unique in this country. Students have access to the Delmar Gallery, which continually exhibits high quality works by well-known artists. The students can exhibit their work at Delmar as well. The School has a major collection of Australian Art, which provides an unparalleled advantage to the serious art student. The department has specialist rooms for –

- Visual Design – twenty iMac computers, digital video cameras, scanners and printers provide expert equipment to develop skills in this field.
- Photography - a large darkroom with fifteen enlargers
- Ceramics - eight wheels, two large electric kilns and a large gas kiln.
- Three general Art rooms- set up for painting and drawing. Life drawing facilities are included in this area.

YEAR 9

CONTENT OUTCOMES

Skin Art
- Students look at art as it applies to decorating the human body.

Space-Time
- Students develop skills in illustration and composition using graphic pen techniques.

Book Illustration
- Students explore the area of children’s book illustration. They work collaboratively to produce a children’s book using a variety of mixed media and graphic processes.

Museum Object Design
- Students explore the process of presenting archaeological information in a museum setting. They gather research about artefacts and create models as realistically as possible.

Tee Shirt Design
- Students explore their own culture and design logos and images representing one of their interests. These images are manipulated on the computer and printed on transparencies to transfer to Tee Shirts. Their clothing becomes their art, their art becomes their clothing.

VISUAL DESIGN

In Visual Design, students will enjoy working as a designer, solving design problems and representing ideas relevant to their daily lives. The main difference between Visual Design and Visual Arts is in Visual Design you are creating a design / artwork for someone else and in Visual Arts you are creating it for yourself. When creating a design for a client you need to work with a brief and research the topic under consideration. Much of the Visual Design course is structured around understanding visual signs and symbols of our contemporary world, learning how to decode or unpack those signs and symbols. When you understand visual design you have a much greater awareness of how advertisers manipulate the viewing population, how to engage others visually to your ideas and concepts and how you can develop a greater aesthetic sense of what looks good and why it looks good.

Visual Design students will:

- Develop practical skills through the making of visual design works in the form of computer graphics, animations, illustrations, jewellery, packaging design and interactive multimedia environments.
- Learn to analyse and interpret their visual environment by studying both recent and historical examples of visual design works.
- Develop a folio of work that represents the knowledge and skills learned throughout the course.
WHY SHOULD YOU CHOOSE VISUAL DESIGN?

→ Because you’d like to be part of an innovative, challenging and exciting course at Trinity Grammar School.
→ Because you like making art and design works using a range of materials and processes such as pencil, paint, inks, washes, clay, stone and metal.
→ Because you are interested in discovering how and why artists and designers create works.
→ Because you are interested in computer graphics, graphic design, advertising, multimedia and web page design.

<table>
<thead>
<tr>
<th>YEAR 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTENT</td>
</tr>
<tr>
<td>20th Century Architecture Space-Time</td>
</tr>
<tr>
<td>Social Issues Installation Art</td>
</tr>
<tr>
<td>Print Making Print Skate Board Design Print</td>
</tr>
</tbody>
</table>
CONTACT US

<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
<th>Phone Number</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACADEMIC DEAN</td>
<td>Mr Jason Cheers</td>
<td>02 9581 6135</td>
<td>jcheers@trinity.nsw.edu.au</td>
</tr>
<tr>
<td>DIRECTOR OF CURRICULUM</td>
<td>Mr Andrew Scott</td>
<td>02 9581 6135</td>
<td>arscott@trinity.nsw.edu.au</td>
</tr>
<tr>
<td>MASTER OF THE MIDDLE SCHOOL</td>
<td>Mr Bradley Barr</td>
<td>02 9581 6150</td>
<td>bbarr@trinity.nsw.edu.au</td>
</tr>
<tr>
<td>DEPUTY MASTER OF THE MIDDLE SCHOOL</td>
<td>Mr David Galluzzo</td>
<td>02 9581 6159</td>
<td>dgalluzzo@trinity.nsw.edu.au</td>
</tr>
<tr>
<td>DEANS</td>
<td>Mr Brenton Boswell</td>
<td>02 9581 6036</td>
<td>bboswell@trinity.nsw.edu.au</td>
</tr>
<tr>
<td></td>
<td>Mr Mark Mikulandra</td>
<td>02 9581 6056</td>
<td>mmikulandra@trinity.nsw.edu.au</td>
</tr>
<tr>
<td></td>
<td>Dr Timothy Barden</td>
<td>02 9581 6089</td>
<td>tbarden@trinity.nsw.edu.au</td>
</tr>
<tr>
<td></td>
<td>Mr Michael Leadbeatter</td>
<td>02 9581 6160</td>
<td>mleadbeatter@trinity.nsw.edu.au</td>
</tr>
<tr>
<td>HEADS OF DEPARTMENT</td>
<td>Reverend Gregory Webster</td>
<td>02 9581 6093</td>
<td>gwebster@trinity.nsw.edu.au</td>
</tr>
<tr>
<td></td>
<td>Mr Brendan Duhigg</td>
<td>02 9581 6131</td>
<td>bduhigg@trinity.nsw.edu.au</td>
</tr>
<tr>
<td></td>
<td>Mr Ian Moore</td>
<td>02 9581 6101</td>
<td>imoore@trinity.nsw.edu.au</td>
</tr>
<tr>
<td></td>
<td>Ms Alison Boyd-Boland</td>
<td>02 9581 6306</td>
<td>aboyd-boland@trinity.nsw.edu.au</td>
</tr>
<tr>
<td></td>
<td>Mr David R Latimer</td>
<td>02 9581 6064</td>
<td>drlatimer@trinity.nsw.edu.au</td>
</tr>
<tr>
<td></td>
<td>Dr Jonathan Harris</td>
<td>02 9581 6114</td>
<td>jharris@trinity.nsw.edu.au</td>
</tr>
<tr>
<td></td>
<td>Ms Stephanie Gaspari</td>
<td>02 9581 6038</td>
<td>sgaspari@trinity.nsw.edu.au</td>
</tr>
<tr>
<td></td>
<td>Mr Ashley Lucas</td>
<td>02 9581 6082</td>
<td>alucas@trinity.nsw.edu.au</td>
</tr>
<tr>
<td></td>
<td>Mr Phil Pratt</td>
<td>02 9581 6116</td>
<td>ppratt@trinity.nsw.edu.au</td>
</tr>
<tr>
<td></td>
<td>Mr Andrew Simos</td>
<td>02 9581 6041</td>
<td>asimos@trinity.nsw.edu.au</td>
</tr>
<tr>
<td></td>
<td>Mrs Maryellen Ottaway</td>
<td>02 9581 6107</td>
<td>mottaway@trinity.nsw.edu.au</td>
</tr>
<tr>
<td></td>
<td>Ms Jennifer Nixon</td>
<td>02 9581 6009</td>
<td>jnixon@trinity.nsw.edu.au</td>
</tr>
<tr>
<td></td>
<td>Mr Steve Collins</td>
<td>02 9581 6059</td>
<td>scollins@trinity.nsw.edu.au</td>
</tr>
<tr>
<td></td>
<td>Ms Fabienne Arora</td>
<td>02 9581 6180</td>
<td>farora@trinity.nsw.edu.au</td>
</tr>
<tr>
<td>CAREERS ADVISER</td>
<td>Dr Frederick Osman</td>
<td>02 9581 6040</td>
<td>fosman@trinity.nsw.edu.au</td>
</tr>
</tbody>
</table>